Expressive Recommender Systems through Normalized Nonnegative Models

نویسنده

  • Cyril J. Stark
چکیده

We introduce normalized nonnegative models (NNM) for explorative data analysis. NNMs are partial convexifications of models from probability theory. We demonstrate their value at the example of item recommendation. We show that NNM-based recommender systems satisfy three criteria that all recommender systems should ideally satisfy: high predictive power, computational tractability, and expressive representations of users and items. Expressive user and item representations are important in practice to succinctly summarize the pool of customers and the pool of items. In NNMs, user representations are expressive because each user’s preference can be regarded as normalized mixture of preferences of stereotypical users. The interpretability of item and user representations allow us to arrange properties of items (e.g., genres of movies or topics of documents) or users (e.g., personality traits) hierarchically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Top-N recommendations from expressive recommender systems

Normalized nonnegative models assign probability distributions to users and random variables to items; see [Stark, 2015]. Rating an item is regarded as sampling the random variable assigned to the item with respect to the distribution assigned to the user who rates the item. Models of that kind are highly expressive. For instance, using normalized nonnegative models we can understand users’ pre...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016